What is TwinOxide?

Montag, 30. September 2013

WHO-Legionella

http://www.who.int/water_sanitation_health/emerging/legionella_rel/en/index.html

Wasserhygiene Gesundheit


Legionellen und die Verhinderung der Legionärskrankheit

Dieses Buch bietet einen umfassenden Überblick über die Quellen, Ökologie und Labor Identifizierung von Legionella.Es gibt Leitlinien für die Bewertung und das Management von Risiken mit potenziell gefährlichen Umgebungen, wie Kühltürme, Schwimmbäder und Whirlpools verbunden. Das Dokument enthält auch identifiziert erforderlichen Maßnahmen, um zu verhindern, oder angemessen zu kontrollieren, ist das Risiko einer Exposition gegenüber Legionellen für die jeweilige Umgebung. Ausbrüche der Legionärskrankheit verursachen in der Regel ein hohes Maß an Morbidität und Mortalität in den Menschen ausgesetzt, deshalb garantiert der Verdacht des Ausbruchs sofortiges Handeln.Diese Veröffentlichung Bewertungen Richtlinien und Verfahren für das Management und Ausbruch der institutionellen Rollen und Verantwortlichkeiten eines Ausbruchs-Team.
Legionellose ist eine Sammlung von Infektionen, die in der zweiten Hälfte des 20. Jahrhunderts entstand, und dass durch Legionella pneumophila und verwandte Legionella Bakterien verursacht werden. Der Schweregrad der Legionellose variiert von mild fieberhaften Erkrankungen (Pontiac-Fieber) zu einer potenziell tödlichen Form der Lungenentzündung (Legionärskrankheit), die jeden treffen kann, sondern vor allem diejenigen, die anfällig wirkt aufgrund von Alter, Krankheit, Immunsuppression oder andere Risikofaktoren wie zum Beispiel wie das Rauchen.Wasser ist die wichtigste natürliche Reservoir für Legionellen und die Bakterien sind weltweit in vielen verschiedenen natürlichen und künstlichen Gewässern, wie Kühltürme, Wasser-Systeme in Hotels, Häuser, Schiffe und Fabriken; Atemtherapie Ausrüstung; Brunnen; Beschlagen Geräte und Spa-Pools.

Download des Dokuments http://www.who.int/water_sanitation_health/emerging/legionella.pdf

Legionellenbekämpfung mit Chlordioxid

http://www.prominent.de/Anwendungen/Legionellenbekaempfung/Chlordioxid-fuer-die-Bekaempfung-von-Legionellen-im-Trinkwasser.aspx
Nächster ArtikelZurück zur Übersicht
Chlordioxid für die Bekämpfung von Legionellen im Trinkwasser

Chlordioxid für die Bekämpfung von Legionellen im Trinkwasser

Eine nachhaltige Bekämpfung von Legionellen in Systemen des Trinkwassers ist nur im Zusammenhang mit der Bekämpfung des Biofilms in den Leitungen möglich.
Biofilme sind Beläge aus Mikroorganismen und extracellulären Substanzen. Diese oft schleimigen oder pilzartigen Beläge werden von den Legionellen besiedelt, die sich dort vermehren. Das Hauptproblem: Biofilme sind extrem resistent gegen Desinfektionsmittel. Daher erweisen sich Legionellen gegenüber gängigen Desinfektionsmethoden äußerst resistent, da der Biofilm sie gegenüber chemischem Angriff schützt. Sämtliche Verfahren, die sich ausschliesslich auf die direkte Zerstörung der Legionellen selbst richten, sind nicht nachhaltig und lösen damit das Problem mit Legionellen nicht.
Zur gleichzeitigen Bekämpfung des Biofilms samt darin enthaltener Legionellen, Pseudomonaden und anderer pathogener Keime stellt Chlordioxid die wirksamste Waffe dar, die im Trinkwasser eingesetzt werden kann. Als im Wasser gelöstes Gas vermag es die Schutzschichten schleimbildender Mikroorganismen zu durchdringen, was nicht nur zu einer Wachstumshemmung des Biofilms führt, sondern auch zu seiner allmählichen Entfernung selbst aus alten Leitungssystemen. Dabei besteht der große Vorteil, dass es als Desinfektionsmittel den Vorgaben der Trinkwasserverordnung entspricht und somit kontinuierlich dosiert werden kann. Dadurch kann bereits mit sehr kleinen Konzentrationen Freiheit von Legionellen mittelfristig erreicht und langfristig bewahrt werden. Im Gegensatz zu anderen Desinfektionsmitteln sind keine Resistenzbildungen zu befürchten. Die ausgezeichnete Depotwirkung von Chlordioxid schützt auch Leitungsstränge, die nicht ständig benutzt werden.
Die Effizienz einer Bekämpfung von Legionellen mit Chlordioxid hängt maßgeblich von der Optimierung der Anwendungskonzentration an den verschiedenen Punkten des zu behandelnden Wassersystems ab. Chlordioxiderzeugungsanlagen der Baureihe Bello Zon® liefern hochreines Chlordioxid in stets reproduzierbarer Menge. Sowohl die Konzentration an Chlordioxid als auch die an Chlorit als Nebenprodukt der Behandlung wird über DULCOTEST® - Sensoren kontinuierlich gemessen. Dadurch ist die Einhaltung der in der Trinkwasserverordnung vorgeschriebenen Grenzwerte zu jedem Zeitpunkt gewährleistet.
Vorteile
  • Zuverlässige, nachhaltige Abtötung von Legionellen, Pseudomonaden und anderen Keimen
  • Abbau des Biofilms im gesamten Leitungssystem des Trinkwassers
  • Kostengünstige Sanierung von infizierten Warm- und Kaltwassersystemen
  • Höchste mikrobiologische Wirksamkeit unter Einhaltung der Trinkwasserverordnung
  • Keine Resistenzbildungen
  • Bekämpfung von Legionellen ohne Betriebsunterbrechung
  • Sichere Online-Kontrolle
Als Marktführer bei Chlordioxidanlagen in der Lebensmittelindustrie verfügt ProMinent über langjähriges Know How. Damit können wir kundenspezifische Lösungen auch zur Bekämpfung von Legionellen in Leitungen des Trinkwassers erstellen, bei denen Sicherheit, Zuverlässigkeit und Wirtschaftlichkeit im Vordergrund stehen.
Kundenstimmen
„Dank Chlordioxid-Technik von ProMinent konnten an allen Verprobungsstellen unseres weitverzweigten Leitungsnetzes die Keimzahlen auf 0 gesenkt werden! Legionellen stellen für unsere Klinik jetzt keine Gefahr mehr dar.”
Peter Leonards, Hygienefachkraft der Krankenanstalt Mutterhaus der Borromäerinnen, Trier
Seite druckenSeite weiterleiten

Anwendung von Chlordioxid zur Beseitigung von Legionellen

Anwendung von Chlordioxid zur Beseitigung von Legionellen 


Zur Zeit läuft eine Untersuchung zur  Bestimmung der  Dosierung  von TwinOxide-Chlordioxidlösungen, um die Legionellenkonzentrationen  um ca. 99,999%  zu senken. Darüber werde ich später berichten.














Bekanntlich werden Chlordioxid-Lösungen auch aus zwei pulverförmigen Stoffen und Wasser hergestellt.

Im folgende  sind die Ergebnisse der Untersuchungen bei Siemens dargestellt, über die in folgender Quelle berichtet wird:

http://www.water.siemens.com/SiteCollectionDocuments/Product_Lines/Wallace_and_Tiernan_Products/Brochures/WT.085.272.017.IE.AN.0409.pdf

Cooling Systems - The ACoP, L8 guidelines state that chlorine
dioxide is effective for the control of Legionella when a residual
of 0.5 mg/L – 1.0 mg/L is maintained in the return water. The
effective concentration should be present for at least four out of
every 24 hours when chlorine dioxide is applied intermittently.
Under these guidelines, routine monitoring for the presence of
Legionella is required by an accredited laboratory. If the aerobic
count cfu/ml at 30°C (minimum 48 hours incubation) is 10,000
or less and the Legionella bacteria cfu/L is 100 or less, the
system is considered under control. If the Legionella levels are
higher than 100 cfu/L then appropriate action is required.

Hot and Cold Water Systems – The AcoP states that chlorine dioxide at levels of 0.5 mg/L can, if properly managed, be effective against planktonic and sessile Legionella in hot water system.

Feed Requirements
For control of bacterial slime and algae in industrial recirculating
and one-pass cooling systems, the required dosages will
vary depending on the exact application and the degree of
contamination present. The required chlorine dioxide residual
concentrations range between 0.1 and 5.0 mg/L. 

Chlorine dioxide may be applied either continuously or intermittently.
The typical chlorine dioxide residual concentration range is
0.1 - 1.0 mg/L for continuous doses, and 0.1 - 5.0 mg/L for
intermittent doses.
The minimum acceptable residual concentration of chlorine
dioxide is 0.1 mg/L for a minimum one-minute contact time.

Relative Effectiveness of Treatment
Alternatives
In general, the following comparison, in decreasing order of effectiveness, holds true for control and removal of bacteria by biocides present under the conditions described:
Bulk Water Bacteria: Biocide efficacy is dependent on the organism. For Legionella at neutral pH:
O3 > ClO2 ≥ HOCl ≥ HOBr
Bacterial Biofilms:
ClO2 >> HOCl ≥ HOBr > O3 > non-oxidizing
Algae:
ClO2 > certain non-oxidizing > HOCl > O3 > HOBr
Amoebic Cysts and Protozoa:
O3 > ClO2 >> HOCl > HOBr


( Dr.W. Storch-2013-09-30)

Die letzten Meter aus dem Wasserhahn


Legionella pneumophila und Pseudomonas aeruginosa können sich in vorhandene Trinkwasser-Biofilme einnisten und in stagnierendes Trinkwasser ausgetragen werden


Werden fakultativ pathogene Bakterien in eine Trinkwasser-Installation eingetragen, so kann es unabhängig von Werkstoffqualität, Werkstoffalter,
Wasserbeschaffenheit und Temperatur zur Einnistung dieser Organismen in vorhandene Trinkwasserbiofilme kommen. Die Organismen persistieren dort über Wochen bis Monate in kaltem und erwärmtem Trinkwasser. Unter günstigen Umgebungsbedingungen ist auch eine Vermehrung möglich. Durch die Freisetzung aus den Biofilmen gelangen sie in das Trinkwasser, so dass Biofilme eine Kontaminationsquelle und somit eine potentielle Infektionsquelle darstellen. Zu den fakultativ pathogenen Bakterien von medizinisch-hygienischer Bedeutung, die in der Praxis in Biofilmen der Trinkwasser-Installation nachgewiesen wurden, gehören L. pneumophila und P. aeruginosa.
Die Ergebnisse der halbtechnischen Versuchsanlage zeigten, dass sich L. pneumophila in Trinkwasser-Biofilme einnistete, besonders bei erhöhten
Temperaturen, unabhängig von der Werkstoffqualität oder der Wasserbeschaffenheit. Eine Vermehrung fand besonders dann statt, wenn Amöben als Wirte für die intrazelluläre Vermehrung zur Verfügung standen, und wenn sehr dichte, aktive (wachsende) Biofilme vorlagen. Unter diesen Bedingungen ist grundsätzlich zu erwarten, dass Legionellen aus dem Biofilm freigesetzt und in das Trinkwasser ausgetragen werden. Die Konzentrationen an L. pneumophila in den Trinkwasserproben (gemäß DIN EN ISO 19458 „Analyse der Wasser-Beschaffenheit an einer Entnahme-Armatur im Haushalt“ (Zweck b)) können bei allen Werkstoffen über dem technischen Maßnahmewert von 100 KBE/100 mL gemäß DVGW-Arbeitsblatt W 551 liegen. Auch in den Biofilmen, die sich im Kaltwasser (12 °C bis 15 °C) entwickeln, konnte L. pneumophila mit den kulturellen Standarduntersuchungsverfahren (ISO 11731) sporadisch nachgewiesen werden. Die Konzentration von L. pneumophila im Biofilm ist abhängig von der Besiedlungsdichte. Werkstoffe, auf denen sich viel Biofilm bildet und sich viele Amöben
entwickeln (z.B. EPDM-Werkstoffe ohne Empfehlung nach DVGW-Arbeitsblatt W 270), bieten das Potential für sehr hohe Konzentrationen an L. pneumophila.
Hohe L. pneumophila-Konzentrationen im Biofilm führen zu hohen Konzentrationen im stagnierenden Trinkwasser. Die Temperatur spielt für die Vermehrung von L. pneumophila eine entscheidende Rolle. Daher ist darauf zu achten, dass Warmwasseranlagen dem Stand des DVGW-Arbeitsblattes W 551 entsprechen. Aber auch Kaltwasseranlagen können, wie im Rahmen des Verbundvorhabens durchgeführte experimentelle Untersuchungen sowie die bundesweite Erhebung und Risikoanalyse bestätigt haben, mit L. pneumophila kontaminiert sein und müssen daher bei Sanierungen von L. pneumophila Kontaminationsfällen bei der Gefährdungsanalyse mit berücksichtigt werden.

Auch P. aeruginosa nistet sich in Biofilme auf allen neuen und gealterten Werkstoffen der Trinkwasser-Installation ein und kann das umgebende stagnierende Wasser durch Freisetzung aus den Biofilmen kontaminieren. Die Dauer der Persistenz sowie die Konzentration der kulturell nachweisbaren P. aeruginosa können zwischen den einzelnen Werkstoffen variieren.
Eine neue Erkenntnis des Projektes ist, dass L. pneumophila und P. aeruginosa in Biofilmen auf Werkstoffen der Trinkwasser-Installation außer in kultivierbarer Form auch in einem nicht-kultivierbaren Zustand vorliegen können. In diesem als VBNC („viable-but-nonculturable“, siehe Glossar) bezeichneten Zustand sind die Bakterien auf üblichen Nährmedien nicht mehr anzüchtbar, obwohl sie lebensfähig sind. VBNC-Bakterien lassen sich mit kultivierungsunabhängigen Verfahren nachweisen. Bewährt haben sich Fluoreszenz-in-situ-Hybridisierung (FISH) unter Verwendung gattungs- bzw. artspezifischer Gensonden und PCRbasierte Methoden.

Sowohl auf neuen als auch auf gealterten Werkstoffen war die Konzentration von P. aeruginosa, die mit der FISH-Methode bestimmt wurde, höher als jene, die kulturell bestimmt wurde. Gleiches gilt auch im Fall der Einnistung von L. pneumophila in Trinkwasserbiofilme. Während die Konzentration der kultivierbaren Zielorganismen schwankte, blieb die Konzentration der FISH-positiven Zielorganismen über den untersuchten Zeitraum relativ konstant. Dies lässt den Schluss zu, dass sich ein Teil der Zielorganismen im Biofilm in einem VBNC-Zustand befand. Darüber hinaus deutet es darauf hin, dass sich der physiologische Zustand der Bakterien im Biofilm durch eine Vielzahl komplexer Prozesse ändern kann. Dazu gehört die Wechselwirkung mit anderen Bakterien und Protozoen, die Änderung der Temperatur oder des Nährstoffgehalts. Daraus wiederum würden sich schwankende Befunde bei mikrobiologischen Routine- und Kontrolluntersuchungen von Trinkwasser-Installationen schlüssig erklären.

Sonntag, 29. September 2013

Legionella-Wikipedia-Chlorine Dioxde

http://en.wikipedia.org/wiki/Legionella

Legionella

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Legionella
Legionella sp. under UV illumination
Scientific classification
Domain:Bacteria
Phylum:Proteobacteria
Class:Gammaproteobacteria
Order:Legionellales
Family:Legionellaceae
Genus:Legionella
Brenner et al. 1979
Species
Legionella adelaidensis
Legionella anisa
Legionella beliardensis
Legionella birminghamensis
Legionella bozemanae Legionella brunensis
Legionella busanensis
Legionella cardiaca
Legionella cherrii
Legionella cincinnatiensis
Legionella donaldsonii
Legionella drancourtii
Legionella dresdenensis
Legionella drozanskii
Legionella dumoffii
Legionella erythra
Legionella fairfieldensis
Legionella fallonii
Legionella feeleii
Legionella geestiana
Legionella genomospecies 1
Legionella gormanii
Legionella gratiana
Legionella gresilensis
Legionella hackeliae
Legionella impletisoli
Legionella israelensis
Legionella jamestowniensis
'Candidatus Legionella jeonii'
Legionella jordanis
Legionella lansingensis
Legionella londiniensis
Legionella longbeachae
Legionella lytica
Legionella maceachernii
Legionella massiliensis
Legionella micdadei
Legionella monrovica
Legionella moravica
Legionella nagasakiensis
Legionella nautarum
Legionella oakridgensis
Legionella parisiensis
Legionella pittsburghensis
Legionella pneumophila
Legionella quateirensis
Legionella quinlivanii
Legionella rowbothamii
Legionella rubrilucens
Legionella sainthelensi
Legionella santicrucis
Legionella shakespearei
Legionella spiritensis
Legionella steelei
Legionella steigerwaltii
Legionella taurinensis
Legionella tunisiensis
Legionella tucsonensis
Legionella wadsworthii
Legionella waltersii
Legionella worsleiensis
Legionella yabuuchiae
The genus Legionella is a pathogenic group of gram negative bacterium, that includes the species L. pneumophila, which causes Legionnaires Disease and L.longbeachae which causes Pontiac Fever.[1][2] It may be readily visualized with a silver stain. Legionella is common in many environments, including soil and aquatic systems, with at least 50 species and 70 serogroups identified.
The side-chains of the cell wall carry the bases responsible for the somatic antigen specificity of these organisms. The chemical composition of these side chains both with respect to components as well as arrangement of the different sugars determines the nature of the somatic or O antigen determinants, which are essential means of serologically classifying many Gram-negative bacteria.
Legionella acquired its name after a July 1976 outbreak of a then-unknown "mystery disease" sickened 221 persons, causing 34 deaths. The outbreak was first noticed among people attending a convention of the American Legion—an association of U.S. military veterans. The convention in question occurred in Philadelphia during the U.S. Bicentennial year. This epidemic among U.S. war veterans, occurring in the same city as—and within days of the 200th anniversary of—the signing of the Declaration of Independence, was widely publicized and caused great concern in the United States.[3] On January 18, 1977, the causative agent was identified as a previously unknown bacterium subsequently named Legionella. See Legionnaires' Disease for full details.

Detection[edit]

Legionella is traditionally detected by culture on buffered charcoal yeast extract (BCYE) agar. Legionella requires the presence of cysteine and iron to grow and therefore does not grow on common blood agar media used for laboratory based total viable counts or on site dipslides. Common laboratory procedures for the detection of Legionella in water[4] concentrate the bacteria (by centrifugation and/or filtration through 0.2 micrometre filters) before inoculation onto a charcoal yeast extract agar containing antibiotics (e.g. glycine vancomycim polymixin cyclohexamide, GVPC) to suppress other flora in the sample. Heat or acid treatment are also used to reduce interference from other microbes in the sample.
After incubation for up to 10 days, suspect colonies are confirmed as Legionella if they grow on BCYE containing cysteine, but not on agar without cysteine added. Immunological techniques are then commonly used to establish the species and/or serogroups of bacteria present in the sample.
Although the plating method is quite specific for most species of Legionella, one study has shown that a coculture method that accounts for the close relationship with amoebas may be more sensitive since it can detect the presence of the bacteria even when masked by its presence inside the amoeba.[5] Consequently, the true clinical and environmental prevalence of the bacteria is likely to be underestimated due to false negatives inherent in the current lab methodology.
Many hospitals use the Legionella Urinary Antigen test for initial detection when Legionella pneumonia is suspected. Some of the advantages offered by this test is that the results can be obtained in a matter of hours rather than the five days required for culture, and that a urine specimen is generally more easily obtained than a sputum specimen. Disadvantages are that the urine antigen test only detects antigen of Legionella pneumophila serogroup 1 (LP1); only a culture will detect infection by non-LP1 strains or other Legionella species and that isolates of Legionella are not obtained, which impairs public health investigations of outbreaks of LD.[6]
New techniques for the rapid detection of Legionella in water samples are emerging including the use of polymerase chain reaction (PCR) and rapid immunological assays. These technologies can typically provide much faster results.

Pathogenesis[edit]

Legionella live within amoebae in the natural environment.[7] Upon inhalation the bacteria can infect alveolar macrophages. subverting the normal host cell machinery to create a niche where the bacteria can replicate. This results in Legionnaires' disease and the lesser form, Pontiac fever. Legionella transmission is airborne via respiratory droplets containing the bacteria. Common sources include cooling towers, swimming pools (especially in Scandinavian countries), domestic hot-water systems, fountains, and similar disseminators that tap into a public water supply. Natural sources of Legionella include freshwater ponds and creeks. Person-to-person transmission of Legionella has not been demonstrated.[8]
Once inside a host, incubation may take up to two weeks. Prodromal symptoms are flu-like, including fever, chills, and dry cough. Advanced stages of the disease cause problems with the gastrointestinal tract and the nervous system and lead to diarrhea and nausea. Other advanced symptoms of pneumonia may also present.
However, the disease is generally not a threat to most healthy individuals, and tends to lead to harmful symptoms only in those with a compromised immune system and the elderly. Consequently, it should be actively checked for in the water systems of hospitals and nursing homes. The Texas Department of State Health services provides recommendations for hospitals to detect and prevent the spread of nosocomial infection due to legionella.[9] According to the journal "Infection Control and Hospital Epidemiology," Hospital-acquired Legionella pneumonia has a fatality rate of 28%, and the source is the water distribution system.[10]
In the United States, the disease affects between 8,000 to 18,000 individuals a year.[3]</ref>

Weaponization[edit]

It has been suggested that Legionella could be used as a weapon and indeed genetic modification of Legionella pneumophila has been shown where the mortality rate in infected animals can be increased to nearly 100%.[11][12][13]

Molecular biology[edit]

With the application of modern molecular genetic and cell biological techniques, the mechanisms used by Legionella to multiply within macrophages are beginning to be understood. The specific regulatory cascades that govern differentiation as well as the gene regulation are being studied. The genome sequences of six L. pneumophila strains have been published and it is now possible to investigate the whole genome by modern molecular methods. It has been discovered that Legionella is a genetically diverse species with 7-11% of genes strain specific. The molecular function of some of the proven virulence factors of Legionella have been discovered by some researchers.[14] Molecular studies are contributing to the fields of clinical research, diagnosis, treatment, epidemiology, and prevention of disease.[2]

Source control[edit]

The most common sources of Legionella and Legionnaires' disease outbreaks are cooling towers (used in industrial cooling water systems), domestic hot water systems,and spas. Additional sources include large central air conditioning systems, fountains, domestic cold water, swimming pools (especially in Scandinavian countries and northern Ireland) and similar disseminators that draw upon a public water supply. Natural sources include freshwater ponds and creeks. Many governmental agencies, cooling tower manufacturers, and industrial trade organisations have developed design and maintenance guidelines for preventing or controlling the growth of Legionella in cooling towers.
Recent research in the Journal of Infectious Diseases provides evidence that Legionella pneumophila, the causative agent of Legionnaires' disease, can travel at least 6 km from its source by airborne spread. It was previously believed that transmission of the bacterium was restricted to much shorter distances. A team of French scientists reviewed the details of an epidemic of Legionnaires' disease that took place in Pas-de-Calais, northern France, in 2003–2004. There were 86 confirmed cases during the outbreak, of which 18 resulted in death. The source of infection was identified as a cooling tower in a petrochemical plant, and an analysis of those affected in the outbreak revealed that some infected people lived as far as 6–7 km from the plant.[15]
Several European countries established the European Working Group for Legionella Infections (EWGLI)[16] to share knowledge and experience about monitoring potential sources of Legionella. The EWGLI has published guidelines about the actions to be taken to limit the number of colony-forming units (CFU, that is, live bacteria that are able to multiply) of Legionella per litre:
Legionella bacteria CFU/litreAction required (35 samples per facility are required, including 20 water and 10 swabs)
1000 or lessSystem under control.
more than 1000
up to 10,000
Review program operation. The count should be confirmed by immediate re-sampling. If a similar count is found again, a review of the control measures and risk assessment should be carried out to identify any remedial actions.
more than 10,000Implement corrective action. The system should immediately be re-sampled. It should then be "shot dosed" with an appropriate biocide, as a precaution. The risk assessment and control measures should be reviewed to identify remedial actions. (150+ CFU/ml in healthcare facilities or nursing homes require immediate action.)
According to the paper "Legionella and the prevention of legionellosis,"[17] found at the World Health Organization website, temperature affects the survival of Legionella as follows:
  • Above 70 °C (158 °F) - Legionella dies almost instantly
  • At 60 °C (140 °F) - 90% die in 2 minutes (Decimal reduction time (D) = 2)
  • At 50 °C (122 °F) - 90% die in 80–124 minutes, depending on strain (Decimal reduction time (D) = 80-124)
  • 48 to 50 °C (118 to 122 °F) - Can survive but do not multiply
  • 32 to 42 °C (90 to 108 °F) - Ideal growth range
  • 25 to 45 °C (77 to 113 °F) - Growth range
  • Below 20 °C (68 °F) - Can survive but are dormant, even below freezing
Other sources[18][19][20] claim alternate temperature ranges:
  • 60 to 70 °C (140 to 158 °F) to 80 °C (176 °F) - Disinfection range
  • 66 °C (151 °F) - Legionella die within 2 minutes
  • 60 °C (140 °F) - Legionella die within 32 minutes
  • 55 °C (131 °F) - Legionella die within 5 to 6 hours
  • 20 °C (68 °F) to 45 °C (113 °F) - Legionella multiply
  • 20 °C (68 °F) & below - Legionella are dormant
Control of Legionella growth can occur through chemical or thermal methods. The least expensive and most effective control method is keeping all cold water below 25°C (78°F) and all hot water above 51°C (124°F). Copper-silver ionization is a heavy metal, systemic toxin that destroys biofilms and slimes that can harbor Legionella over the long term. To date no copper-silver system has had EPA approved efficacy studies resulting in final EPA approval as a biocide. Chlorination with chlorine dioxide or monochloramine are extremely effective oxidizing biocides. Ultraviolet light is an excellent treatment but it does not leave a residual in the bulk water system. Thermal eradication is a short term marginally effective and expensive method. Ozone is extremely effective oxidizing biocide for cooling towers, fountains and spas treatment.[21]

Chlorine[edit]

A very effective chemical treatment is chlorine. For systems with marginal issues chlorine will provide effective results at 0.5 ppm[citation needed] residual in the hot water system. For systems with significant Legionella problems a residual of as much as 3 ppm free chlorine is required in the hot water system. This level of chlorine will destroy copper piping within 7 to 10 years.

Industrial Size Copper-Silver ionization[edit]

Industrial-size copper-silver ionization is recognized by the U.S. Environmental Protection Agency and WHO for Legionella control and prevention. When copper and silver ions maintained, when taking into account both water flow and overall water usage, the disinfection function within all of a facilities water distribution network will occur within 30 to 45 days. Key engineering features such as 10 amps per ion chamber cell and automated variable voltage outputs having no less than 0-100 VDC are but a few of the required features for proper Legionella control and prevention. Swimming pool ion generators are not engineered for facility potable water Legionella control and prevention.
Ionization is an effective industrial control and prevention process to control Legionella in potable water distribution systems found in health facilities, hotels, nursing homes and most large buildings. CuAg is not intended for cooling towers because of pH levels over 8.6 that cause ionic copper to precipitate. In 2003 researchers that heavily support ionization developed a four validation process that supports their research on ionization. Ionization became the first such hospital disinfection process to have fulfilled a proposed four-step modality evaluation; by then it had been adopted by over 100 hospitals.[22] Additional studies indicate ionization is superior to thermal eradication.[23]

Chlorine dioxide[edit]

Chlorine dioxide has been EPA approved as a primary potable water disinfectant since 1945. It does not produce any carcinogenic byproducts like chlorine and is not a restricted heavy metal like copper. It has proven excellent control of Legionella in cold and hot water systems and its ability as a biocide is not impacted by pH, or any water corrosion inhibitors like silica or phosphate. Monochloramine is an alternative. Like chlorine and chlorine dioxide, monochloramine is EPA approved as a primary potable water disinfectant. EPA registration requires an EPA biocide label which lists toxicity and other data required by the EPA for all EPA registered biocides. If the product is being sold as a biocide then the manufacturer is legally required to supply a biocide label. And the purcharser is legally required to apply the biocide per the biocide label. When first applied to a system chlorine dioxide can be added at disinfection levels of 2 ppm for 6 hours to clean up a system. This will not remove all biofilm but will effectively remediate the system of Legionella.

Vaccine research[edit]

There is no vaccine for legionellosis, and antibiotic prophylaxis is not effective. Any licensed vaccine for humans in the US is most probably still many years away. Vaccination studies using heat-killed or acetone-killed cells have been carried out, and guinea pigs were challenged intraperitoneally or by using the aerosol model of infection. Both vaccines were shown to give moderately high levels of protection. Protection was found to be dose dependent and correlated with antibody levels as measured by enzyme-linked immunosorbent assay to an outer membrane antigen and by indirect immunofluorescence to heat-killed cells.

Moist heat sterilization[edit]

Moist heat sterilization (superheating to 140 °F (60 °C) and flushing) is a nonchemical treatment that typically must be repeated every 3–5 weeks.

Monitoring[edit]

Minimal monitoring guidelines are stated in ACOP L8 in the UK. These are not mandatory however are widely regarded as so. An ACOP is an Approved Code of Practice which an employer or property owner must follow, or achieve the same result. Failure to show monitoring records to at least this standard has resulted in several high profile prosecutions, e.g. Nalco + Bulmers - Both could not prove a sufficient scheme to be in place whilst investigating an outbreak, therefore both were fined in the region of £300,000GBP. Important case law in this area is R v Trustees of the Science Museum 3 All ER 853, (1993) 1 WLR 1171[24]
Any building within the UK which is subject to HASAW 1974 is required under COSHH and ACOP L8 to have a legionella risk assessment carried out. The report should include a detailed narrative of the site, asset register, simplified schematic drawings (if none available on site), recommendations on compliance and a proposed monitoring scheme.
Log books should be held on site for a minimum of 5 years. E-logbooks are available, however issues can arise if a site audit is carried out and the auditor cannot access the server for any reason (User isn't set up, someone is on holiday/ill, etc.). Electronic logbooks are generally more useful when managing large portfolios, however a duplication is advisable because of the 5 year 'on site / available for inspection' requirement, and therefore kills the 'no paper' argument.
The requirements of the L8 ACOP and regulations says that the legionnaires risk assessment should be reviewed at least every 2 years and whenever there is reason to suspect it is no longer valid, such as if you have added to, or modified, your water systems, or if the use of the water system has changed, or if your legionella control measures are no longer working.

See also[edit]

References[edit]

  1. Jump up ^ Ryan KJ; Ray CG (editors) (2004). Sherris Medical Microbiology (4th ed.). McGraw Hill. ISBN 0-8385-8529-9.
  2. ^ Jump up to: a b Heuner K, Swanson M (editors). (2008). Legionella: Molecular Microbiology. Caister Academic Press. isbn = 978-1-904455-26-4.
  3. Jump up ^ Lawrence K. Altman (August 1, 2006). "In Philadelphia 30 Years Ago, an Eruption of Illness and Fear". New York Times.
  4. Jump up ^ ISO 11731-2:2004 Water quality -- Detection and enumeration of Legionella -- Part 2: Direct membrane filtration method for waters with low bacterial counts
  5. Jump up ^ La Scola B, Mezi L, Weiller PJ, and Raoult1 D (2001). "Isolation of Legionella anisa Using an Amoebic Coculture Procedure". J Clin Microbiol. 39(1): 365–6. doi:10.1128/JCM.39.1.365-366.2001. Retrieved 2013-06-28.
  6. Jump up ^ Trends in legionnaires disease, 1980-1998: declining mortality and new patterns of diagnosis. Benin AL; Benson RF; Besser RE. Clin Infect Dis November 1, 2002;35(9):1039-46. Epub October 14, 2002.
  7. Jump up ^ Swanson M, Hammer B (2000). "Legionella pneumophila pathogesesis: a fateful journey from amoebae to macrophages". Annu Rev Microbiol 54: 567–613. doi:10.1146/annurev.micro.54.1.567. PMID 11018138.
  8. Jump up ^ Winn, W.C. Jr. (1996). Legionella (In: Baron's Medical Microbiology, Baron, S. et al., eds. (4th ed.). University of Texas Medical Branch. ISBN 0-9631172-1-1. (via NCBI Bookshelf)
  9. Jump up ^ Report of the Texas Legionnaires' Disease Task Force, Texas Department of State Health Services [1]
  10. Jump up ^ Infection Control and Hospital Epidemiology, July 2007, Vol. 28, No. 7, "Role of Environmental Surveillance in Determining the Risk of Hospital-Acquired Legionellosis: A National Surveillance Study With Clinical Correlations" [2]
  11. Jump up ^ http://www.aina.org/news/20081201063837.htm
  12. Jump up ^ Gilsdorf et al., Clinical Infectious Diseases 2005; 40 p1160–1165 "New Considerations in Infectious Disease Outbreaks: The Threat of Genetically Modified Microbes" http://cid.oxfordjournals.org/content/40/8/1160.full
  13. Jump up ^ http://www.homelandsecurity.org/journal/Interviews/PopovInterview_001107.htm
  14. Jump up ^ Raychaudhury S, Farelli JD, Montminy TP, Matthews M, Ménétret JF, Duménil G, Roy CR, Head JF, Isberg RR, Akey CW (Apr 2009). "Structure and function of interacting IcmR-IcmQ domains from a Type IVb secretion system in Legionella pneumophila". Structure 17 (4): 590–601. doi:10.1016/j.str.2009.02.011. PMC 2693034. PMID 19368892.
  15. Jump up ^ Nguyen, T.; Ilef, D.; Jarraud, S.; Rouil, L.; Campese, C.; Che, D.; Haeghebaert, S.; Ganiayre, F.; Marcel, F.; Etienne, J.; Desenclos, J. (2006). "A community-wide outbreak of legionnaires disease linked to industrial cooling towers—how far can contaminated aerosols spread?". Journal of Infectious Diseases 193 (1): 102–11. doi:10.1086/498575. PMID 16323138.
  16. Jump up ^ "European Working Group for Legionella Infections".
  17. Jump up ^ "LEGIONELLA and the prevention of legionellosis".
  18. Jump up ^ "Safe Hot Water Temperature".
  19. Jump up ^ "Controlling Legionella in Domestic Hot Water Systems".
  20. Jump up ^ "Employers Guide to the control of Legionella".
  21. Jump up ^ Hayes, John. "Copper/silver ionization gaining approval". Professional Carwashing & Detailing 25 (12).
  22. Jump up ^ Stout & Yu 2003 "(1) Demonstrated efficacy of Legionella eradication in vitro using laboratory assays, (2) anecdotal experiences in preventing legionnaires’ disease in individual hospitals, (3) controlled studies in individual hospitals, and (4) validation in confirmatory reports from multiple hospitals during a prolonged time."
  23. Jump up ^ Block 2001.
  24. Jump up ^ www.hse.gov.uk/chemicals/.../legionella-09/law-and-legionella.pdf

http://www.who.int/water_sanitation_health/emerging/legionella.pdf

External links[edit]

Maintenance guidelines[edit]